Accurate Passive Targets for Radiometric and Polarimetric SAR System Calibration

Jens Reimann, Marco Schwerdt

German Aerospace Center - DLR

Microwaves and Radar Institute

Knowledge for Tomorrow

What's the RCS of this Trihedral Corner Reflector at X-band?

$$\sigma = \frac{4}{3} \frac{\pi l^4}{\lambda^2} \mathbf{?}$$

DLR SAR

Why do we care?

Trihedral CRs form the Radiometric Reference for (all) our SAR Satellites!

SAR Image

DLR SAR

What's wrong with this Equation?

$$\sigma = \frac{4}{3} \frac{\pi l^4}{\lambda^2}$$

GO Simplification

Geometrical Optics assumes

- ➢ Radar Wave as a Ray
- Infinite Large Plates
- ➢ No Edges
- Corner Large w.r.t. Wavelength

Deformation

Corner Reflector is never ideal

- Plates are not orthogonal
- Plate Deformation

Corner Reflector Defomation

DLR SAR

How to Overcome GO Simplification?

Corner Reflector has to be simulated

- Shoot & Bouncing Rays (SBR): based on Physical Optics -> not precise enough
- Finite Element Method (FEM): extreme Memory consumption -> not feasible
- Multilevel Fast Multipole Method (MLFMM): based on Method of Moments -> precise and fast

Surface Currents and Edges causing oscillation for RCS

Oscillation Amplitude depends of relative Size (1.5 m CR @ X-band: ±0.2 dB)

Point Target Simulation

- ➤ SAR Processing is a filtering
 - over Frequency in Range
 Direction
 - over Synthetic Aperture Angle in Azimuth Direction
- Point Target Simulation calculates the Impulse Response Function (IRF) considering the SAR parameters like
 - Range Bandwidth
 - Doppler Bandwidth
 - Windowing Filter

DLR SAR

How to retrieve a good RCS Estimation?

Uncertainty Estimation: Relative Error

Relative RCS between Corner Reflectors as measured by TerraSAR-X

Standard-Deviation: ~0.15 dB, Standard Error: ~0.031 dB

Uncertainty Estimation: Absolute Error

What absolute reference to use if the CR is already our best RCS reference?

RCS of Trihedral Corner Reflectors can be estimated much better than 0.1 dB (1σ)

Solution of HESS and FERO slightly diller (Analysis is on-going)

3-Transponder-Method can estimate RCS without a Reference (Measurement is on-going)

Cente

Conclusion

- Trihedral Corner Reflectors are the most commonly used Reference for Absolute Radiometric Calibration
- Closed-form RCS equation is inaccurate for real Corner Reflectors
- Full-wave Simulation of Trihedral Corner Reflectors has become feasible
- Individual Deformation has to be considered resulting in a RCS uncertainty < 0.1 dB</p>

Dr.-Ing. Jens Reimann | Senior Scientist | Calibration Tel: +49 8153-28-3595 | Fax: +49 8153-28-1449 | jens.reimann@dlr.de

DLR.de • Chart 13 > Novel Concept for Concurrent Instrument Calibration during SAR Acquisition > Jens Reimann • 20 Nov 2017

BACKUP

DLR.de • Chart 14 > Novel Concept for Concurrent Instrument Calibration during SAR Acquisition > Jens Reimann • 20 Nov 2017

DLR

